Using FMI/ SSP for Development of Autonomous Driving

presented by Jochen Köhler (ZF)

FMI User Meeting 15.05.2017
Prague / Czech Republic
Motivation I

• Autonomous Driving is a Megatrend for the automotive industry
• Intensive cooperation of companies is mandatory
• Simulation is essential for efficient development and future homologation of products
• Platforms and interchange standards are needed and decided upon in the very near term (< 1-2 years).
• Great chance for further FMI impact, however limited time horizon for needed evolution...
Motivation II

- **HAD & Connected System Simulation Environment**

 Environment
 - 3D Road Network & Infrastructure
 - Freeway, rural & Urban roads, Buildings
 - Traffic signs, traffic lights
 - Street markings
 - Traffic
 - Vehicles, Pedestrians
 - Objects
 - Environmental Conditions
 - Weather, Lighting
 - Friction coefficient

 Sensors
 - (Models)
 - Radar
 - Lidar
 - Camera
 - Inertial & wheel speed sensors
 - GPS, map data

 System Fct
 - Environment Perception
 - Decision Making
 - Motion Planning & Control
 - Actuator Management
 - Odometry/Localisation

 Server, Cloud

 Test Scenarios
 - Simulation Environment

 Vehicle Model

 Actuation
 - Brake
 - Steering
 - Power Train

 Connectivity

 HAD System Functional Chain

 FMI /SSP for Autonomous Driving (BOSCH, BMW, ZF, dSPACE, PMSF) – FMI-User Meeting 15.05.2017
Motivation II

FMI provides insufficient datatypes for sensors

- **Environment**
 - 3D Road Network & Infrastructure
 - Freeway, rural & Urban roads, Buildings
 - Traffic signs, traffic lights
 - Street markings
 - Traffic
 - Vehicles, Pedestrians
 - Objects
 - Environmental Conditions
 - Weather, Lighting
 - Friction coefficient

- **Sensors**
 - Radar
 - Lidar
 - Camera
 - Inertial & wheel speed sensors
 - GPS, map data

- **System Fct**
 - Environment Perception
 - Decision Making
 - Odometry/Localisation
 - Vehicle Motion Control

- **Server, Cloud**
 - Connectivity

- **FMI Co Simulation ✔**

- **HAD & Connected System Simulation Environment**

- **FMI**

FMI / SSP for Autonomous Driving (BOSCH, BMW, ZF, dSPACE, PMSF) – FMI-User Meeting 15.05.2017
Usage of SSP in defining Simulation Architecture for ADAS in ZF

Signal dictionaries

Environment: Infrastructure, Car2X, Traffic, Weather

Driver: Behavior, Human mechanics, HMI

Ego-Vehicle: Driveline, Gearbox, Actuators, Driveline, Chassis, Actuators, Axles, Wheels, Sensors, Cameras, Radar, Lidar

ADAS functions: Sensing, Perception, Planning, Actuating

FMI /SSP for Autonomous Driving (BOSCH, BMW, ZF, dSPACE, PMSF) – FMI-User Meeting 15.05.2017
SmartSE solutions in SE Collaborations

- **Partner A**
 - Model Content
 - Model Data Management
 - IP-Protection
 - WP 5
 - WP 6

- **Partner B**
 - Model Data Management
 - IP-Protection
 - WP 5
 - WP 6

- Standardized architecture & artifacts
 - WP 2

- Standardized processes & formats
 - WP 3
 - WP 4
Usage of FMI / SSP for Autonomous Driving

• Motivation:
 – AD system models require integration of environment simulation, sensor models, AD algorithm components with driving dynamics
 – Sampled systems, requiring complex data types (object lists, reflex lists, ...) with dynamic sizing and large scalar content (>> 10000 scalars)
 – Complex connectivity, exchange of connected systems between platforms

• Requirements:
 – Extension of FMI with more interface data types:
 • Opaque binary data types (e.g. length-terminated, MIME-Type tagged)
 • Better: Integration of proper Interface Description Language
 • Not needed: Use of those data types as continuous variables in ADEs
 – Extension of SSP with matching connector types.

• Activities:
 – SmartSE: Unification of driver models, common driver model interfaces
 – FMI + Open Simulation Interface as sensor model interface standard
Requirements to FMI / SSP

- Better support in FMI (2.1?) for sampled data systems in FMI for Model exchange or hybrid Co-Simulation include sensor, controller and ECU-SW models in system simulation.
- Improve Standard compliance of FMI supporting tools by extended cross-checking in order to fulfill requirements to support homologation.
- SSP Standard must be compatible / convertible to ASAM Standard used for ECU-SW description.
Conclusions

• Standards are essential for cross-company development and simulation of HAD systems

• A few major points are presented here
 – Standards for sensor interfaces → Extension of FMI standard
 – Standards for connection and parametrization of FMUs → SSP
 – Shared good practice / usage hints for FMI, co-simulation
 – Approach for cross divisional specification, creation and maintenance of standardized models
Backup
FMUs from 5 different companies combined to “System Model”
For each FMU different variants used (6 cycle-, 4 driver-, 3 vehicle-FMU variants)
In sum 72 FMU-combinations created and simulated on dSPACE VEOS platform
Results:
 – All FMU combinations can be simulated
 – All driver FMUs allow to follow velocity profiles like EUDC, FTP75, WLTC, …
 – For seamless exchange between companies, FMU interface specification must be very accurate and ideally machine readable
 – Template FMUs according to proposal from Modelica SSP project could be helpful:
 • Template FMUs could be generated from “System Model”
 • Template FMUs should be importable in modelling tools to transport interface